Analysis on eigenvalues for preconditioning cubic spline collocation method of elliptic equations
نویسندگان
چکیده
منابع مشابه
Analysis on eigenvalues for preconditioning cubic spline collocation method of elliptic equations
In the work of solving a uniformly elliptic differential equations Au := − u+ a1ux + a2uy + a0u = f in the unit square with boundary conditions by the C1-cubic spline collocation method, one may need to investigate efficient preconditioning techniques. For this purpose, using the generalized field of values argument, we show the uniform bounds of the eigenvalues of the preconditioned matrix whe...
متن کاملPreconditioning techniques in Chebyshev collocation method for elliptic equations
When one approximates elliptic equations by the spectral collocation method on the Chebyshev-Gauss-Lobatto (CGL) grid, the resulting coefficient matrix is dense and illconditioned. It is known that a good preconditioner, in the sense that the preconditioned system becomes well conditioned, can be constructed with finite difference on the CGL grid. However, there is a lack of an efficient solver...
متن کاملADI Methods for Cubic Spline Collocation Discretizations of Elliptic PDE
This paper presents the formulation, the analysis and the implementation of Alternating Direction Implicit (ADI) methods for solving the linear system of algebraic equations that arise from the discretization of multidimensional linear elliptic Partial Diierential Equations (PDEs). The theoretical analysis is carried out for a board class of PDE problems. Numerical experiments connrm the theore...
متن کاملSPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS
The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...
متن کاملFourth Order Accuracy for a Cubic Spline Collocation Method
This note is inspired by the paper of Bialecki, Fairweather, and Bennett [1] which studies a method for the numerical solution of u00 = f on an interval, and u = f on a rectangle, with zero boundary data; their scheme calculates that C piecewise cubic U for which U 00 (or U) agrees with f at the two (or four) Gauss quadrature points of each subdivision of the original domain. They observe that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2001
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(00)00321-9